数学二次函数教学反思

时间:2024-11-06 08:37:08
数学二次函数教学反思

数学二次函数教学反思

作为一名人民老师,我们的任务之一就是教学,写教学反思能总结我们的教学经验,那么什么样的教学反思才是好的呢?下面是小编为大家整理的数学二次函数教学反思,欢迎大家分享。

数学二次函数教学反思1

这节课我是采用先让学生按照学案的提示,自主预习课本,受到课本所给出的分析过程的思维限制,很容易把问题解决了,但没有放手让学生从不同角度去尝试建立坐标系,体会各种情况下所建立的坐标系是否有利于点的表示,没有激发学生学习的热情,没有给予学生以启迪。用二次函数知识解决实际问题是本章学习的一大难点,遇到实际问题学生往往无从下手,学生在解题过程中遇到一个新的问题该如何去联想?联想什么?怎样联想?这与课堂教学过程中老师解题方法的讲授至关重要,老师在课堂教学过程中应如何引导学生判断、分析、归类。为此我在另一个班采取了以下的教学过程,突出以学生为主体,教师只是引导学生经历分析——观察——抽象——概括——发现新知——解决新知的过程。为了让学生发现方法、领悟方法、运用方法,同时我特意给学生留有一定的思考和交流讨论的时间。

通过两节课的对比,我发现数学的自主学习,不能千遍一律,应针对具体内容采取灵活多变的方法。例如一些简单的计算的课堂可以先让学生自主预习,独立进行探究,完成课本上的填空,发现规律;然后小组共同归纳,总结规律,应用规律学习例题,解决问题。一些需要思维的课堂活需要探讨的课堂,我认为应该利用学案,不让学生看课本,教师引导学生进行探究活动,让学生自己发现关系、规律。总之数学的自主学习课应根据课程内容的不同,采取不同的方法,才会收到较好的效果。

数学二次函数教学反思2

课后查看了数学课程标准中对二次函数的要求:

1、通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

2、会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

3、会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。

4、会利用二次函数的图象求一元二次方程的近似解。

发现并没有提到用顶点式来求二次函数的解析式,而且在后面的几节课的教学中也没有要求用顶点式来求二次函数的解析式。但是我认为新课标所提出的要求应该是对学生的最低要求,它并不反对教师结合学生的实际对教材的重新处理。并且从教学的反馈来看,加上了这3个练习学生能较好的理解本课的教学目标,同时也能对前面所学的二次函数顶点的知识加深印象。适应学生的最近发展区。何乐而不为。

数学二次函数教学反思3

这节课是在学完正、反比例、一次函数,认识了一元二次方程之后的二次函数的第一节课,从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。

但是如果光从这些知识点上来讲这节课,其实很简单,学生在原有知识的储备基础上很容易迁移和接受这些知识,那么这节课还有什么好设计的呢?

重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!

整节课的流程可以这样概括:学生感兴趣的简单实际问题——引出学过的一次函数——复习学过的所有函数形式——设问:有没有新的函数形式呢?——探索新的问题——形成关系式——是函数吗?——是学过的函数吗?——探索出新的函数形式——概括新函数形式的特点——将特点公式化——形成二次函数定义——有练习巩固定义特点——返回实际问题讨论实际问题对自变量的限制——提出新的问题,深入讨论——课堂的小结,这样设计一气呵成,感觉上无拖沓生硬之处,最关 键的是我认为这符合学生的基本认知规律,是容易让学生理解和接受的。

对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。

对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。

对于最后讨论题的设计和提出,是我在进行了整个一章的单元备课后发现,我们其实对二次函数的最值问题是不讲的,但是不讲并不代表一点都不会涉及到,其中用到的思想方法还是相当重要的,在图象的观察中也具有了重要的地位,再加上这个问题在进行了前面的实际问题的解答之后是呼之欲出的:多种树——想提高产量——多种几棵好呢?,所以我设计了这个探索性的问题:假如你是果园的主人,你准备多种几棵?注意这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题的提出是整节课的一个高潮和精华,是学生学完二次函数定义之后,综合利用函数的基本知识,代数式的知识和一元二次方程的知识进行的思考,因而他们的想法和说法,不论对错,不论全面还是有所偏颇,其中都涉及到了重要的数学思想方法,而这些恰恰是非常重要的。事实证明学生的思维真的是非常活跃的,你要你给了足够的空间,他们总能从各方各面进行思考和解释。

数学二次函数教学反思4

这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。通过学生的讨论,解决了自己不能解决的问题,拓展应用题通过学生的展示讲解让大部分学生基本掌握,使学生在原有知识的储备基础上很容易迁移和接受了这些知识.这节课的重点内容放在“经历探索和表示二次函数关系的过程,使学生获得了用二次函数表示变量之间关系的体验。

在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。整个教学过程主要分为三部分:第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。我的设计目的就上让学生在复习这些知识的过程中体会从函数图像来研究函数性质的。应该说这样设计既让初四同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。第二部分是学习探究,探求活动前先让一名同学读了学习目标,让大家带着目标去探究。

整节课的流程可以这样概括:学生讨论问题——学生展示重点内容——完善训练题讨论实际问题对自变量的限制——课堂的小结,最关键的是我认为这符合学生的基本认知规律,是容易让学生理解和接受的。

……此处隐藏8077个字……生已有的知识展开教学,通过解决问题,充分激发学生的求知欲,调动学生学习的积极性和主动性。

二是在学习的过程中,不仅注重对学生知识的教授,更注重教给学生学习和思考的方法,提高学生独立发现问题、解决问题的能力,让学生时时体验到成功的快乐。

三是在整个教学过程中,注重不同层次学生的发展,不同的学生的个体差异,再加上受教学目的等因素的限制,导致一些学有余力的学生会感到吃不饱现象,因此在后面的练习设计中,也有针对性的习题,对这部分学生提高也是很有帮助的。

不足之处表现在:

1、由于学生对一次函数的遗忘,因此复习占用的太多的时间,导致课后练习没完成。

2、学生自学环节,要求不够细致,学生学的不够深入只是看了教材,而未挖掘出教材以外的东西。

3、由于时间紧张小结的不够完整。

总之,本节课的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。

数学二次函数教学反思15

新人教版九年级数学第二十二章《二次函数》是学生学习了正比例函数、一次函数进一步学习函数知识,是函数知识螺旋发展的一个重要环节,二次函数单元教学反思。二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型。和一次函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。

下面是我通过本单元对《二次函数》教学内容的分类后的几点反思:

“二次函数概念”教学反思

关于“二次函数概念”教学中我的成功之处是:教学时,通过实例引入二次函数的概念, 让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。通过学习求一些简单的实际问题中二次函数的解析式和它的定义域;大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义。绝大多数学生理解了二次函数的概念;掌握了二次函数的一般表达式以及二次项和二次项的系数、一次项和一次项的系数及常数项。

不足之处表现在:少数学生不能从函数本身的实际意义去正确判定一个函数是否是二次函数。

“二次函数的图像及性质”教学反思

关于“二次函数的图象和性质”在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。通过引导学生在坐标纸上画出二次函数y=ax的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导学生要明确取点注意的事项,比如代表性、易操作性。在性质的探究中我让学生观察图像自主探讨当a>0时函数y=ax的性质。当a<0时函数y=ax的性质。探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。通过观察自己画出的两个图象,它们代表函数y=ax的两种情况,找出a的符号不同时他们的相同点、不同点和联系点。绝大多数学生通过观察图像理解并掌握了y=ax图像的性质,紧接着,我用了三节课时间引导学生通过坐标平移探究了y=ax+k、y=a(x-h)、y=a(x-h)+k的图像,绝大多数学生很快掌握了图形平移的规律,理解了平移后图像的性质,教学反思《二次函数单元教学反思》。达到了学习目标中的要求。

不足之处表现在:

1.课堂上时间安排欠合理。学生说的多,动手不够

2. 学生作图速度慢。简单的列表、描点、连线。学生做起来就比较困难,作图中单位长度不准确,描点不准确,图象中的平滑曲线不够平滑

3.合作学习的有效性不够。对于老师提出的问题,各组汇报讨论结果的效果不明显。说明自主、探究、合作的学习方式没有落到实处,学生的创新能力的培养不够。

4.少数学生二次函数图像平移变换能力差。不会进行二次函数图像的平移变换。

“求二次函数解析式”教学反思

关于“求二次函数解析式”教学中,我通过创设有关待定系数法的问题情境出发,导入求二次函数一般解析式的方法。学生把已知点代入二次函数的一般解析式,很快就得出了三元一次方程组,学生很快就理解了求二次函数一般解析式的方法。然后我通过变式,给出抛物线的顶点坐标和经过抛物线的一个点,引导学生设顶点式的二次函数解析式,学生在老师的点拨下,将已知点代入,很快理解了用顶点式求的二次函数解析式的方法。再通过变式我又引导学生观察抛物线与x轴的交点,启发学生设交点式解析式求二次函数解析式的方法。在整个教学中,环环相扣,充分调动了学生学习的积极性和主动性,所以教学非常流畅,效果不错,目标的达成度较高。

不足之处表现在:

1.一般式的应用中学生的难度在于解三元一次方程组上。

2.学生对求顶点式和交点式的二次函数解析式方法欠灵活

3.变式训练的习题太少导致学生掌握知识不够牢固

“实际问题与二次函数”教学反思

关于“实际问题与二次函数”教学中我通过引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式的表达形式,以及二次函数的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。然后出示问题1,即最大面积问题。教材中的三个探究我分别安排了三节课进行分类教学。我从学生的实际出发,帮助学生解决学习中的困难,启发和引导学生观察二次函数图像,对图像进行分析,得出解决问题的方案。教学每一类实际问题,我都搜集了大量的实例,所以教学重点、难点把握的较准确,同时调动大多数学生学习的积极性和主动性,所以这部分内容学生掌握的比较好。

不足之处表现在:

1.“探究1”中少数学生对于用配方法或公式法求函数的极值容易出错

2.少数学生不会分析题意,不能正确列式求出二次函数的解析式

3.“探究2”少数学生对最大利润问题中的涨价和定价理解有偏差

4.“探究3”少数学生不会灵活建立直角坐标系把实际问题转化为数学问题

以上就是我在教学本单元的感受、体会。因为二次函数知识是函数中的重点也是中考的重点考点,所以针对教学中的不足和学生暴露出的问题,在期末复习中还要制定详实有效的复习计划,通过精选习题再进行最后的强化训练。

《数学二次函数教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式